
Data Quality Validator (DQV)
Engineered for Every Byte That Matters

.

© 2025 Kumaran Systems

Kumaran’s

Pain Points in Data Processing

© 2025 Kumaran Systems 2

Manual Excel Hell

Sampling Risks

Format Mismatches

Scale Limitations

Inconsistent Masking

Reference Integrity Lost

Performance Impacts

Compliance Gaps

Discovery Too Late

Inconsistent Validation

Missing Business Rules

Format InconsistenciesData Comparison

Nightmares

Data Masking

Complexity

Data Quality

Blind Spots

Data Loss

Transformation Errors

Environment Differences

Different DatasetsMigration

Failures

Production Data Risks

Insufficient Test Data

Data Relationships Broken

Privacy ViolationsTest Data

Challenges

Solution Overview

© 2025 Kumaran Systems 3

Unified Platform

Any-to-Any Connectivity

Enterprise Scale

Business-Friendly
DQV

DQV – Built on lessons learnt

Operations Who needs DQV?

DQV

© 2025 Kumaran Systems 4

User Use Cases

ETL Tester ✓ ✓ ✓ ✓

✓ Validate & report quality of incoming data.

✓ Fixing the missing or invalid data.

✓ Mimic the data flow & process to get target data set.

✓ Compare source and target data sets.

✓ Generate synthetic data for testing the data process.

DBA ✓ ✓
✓ Mask (in-flight, in-place, deterministic masking) data

✓ Migrate data between environments.

Developer ✓ ✓ ✓ ✓

✓ Validate & report the quality of incoming data.

✓ Fixing the missing or invalid data.

✓ Export and import data to different formats.

✓ Compare two different data sets – Unit testing.

✓ Generating synthetic data in the absence of production

grade data

Functional QA ✓ ✓ ✓

✓ Generate test data out of existing database records.

✓ Compare two different data sets / exported files / DB.

✓ Generate synthetic test data.

API Tester ✓ ✓ ✓

✓ Generate synthetic test data.

✓ Mimic the data flow & process to get target data set.

✓ Compare actual vs expected results.

Comparison

Masking

Validation

Transfer / Migration

Synthetic Data Generation

Features & Data Sources

General Features

Supported Data Sources

▪ Supports various Homogeneous or

Heterogeneous data sources (Extensible

to new data sets)

▪ Parallel Processing

▪ Lesser memory / CPU even for multi-

million records

▪ Detailed field level comparison results

▪ Detailed mismatch reports

▪ Integration with CI/CD pipeline; or

embeddable in application

✓ Databases
▪ Any Relational Database (Oracle , MS SQL Server / Azure SQL, MySQL / MariaDB,

PostgreSQL, etc)

▪ Any NoSQL database having JDBC drivers (MongoDB, DataBricks, etc)

▪ ODBC data sources via ODBC-JDBC driver.

✓ Files
▪ Delimited Files (CSV, TSV, custom delimiter)

▪ Fixed Length text files

▪ Excel files (old and new formats)

✓ File Formats
▪ XML

▪ JSON

✓ Special Data Sources
▪ Parquet files

▪ REST APIs

▪ Any AMQP supported middleware (ActiveMQ, IBM-MQ, Solace, etc)

✓ Any other custom data sources

© 2025 Kumaran Systems 5

Operations

▪ Filter & Transform data

▪ Aggregate the data

▪ Create calculated fields

Transfer / Migration

▪ Supports different structures

▪ Memory efficient even on large data comparison

▪ Detailed comparison results, highlight field level data

differences

▪ Detailed mismatch report

Comparison
▪ Validate the quality of data (part of profiling)

▪ Field level: Null values, Value in Range, List of

Values, Format / pattern

▪ Record level: Conditions against value of other fields

(example: max_val >= min_val)

▪ Fix the data on-the-fly for missing or incorrect values

Validation

▪ Meaningful data generator (names, addresses, etc)

▪ Numerical, String generators with given range, list of

values

▪ SIN / SSN fake value generation

▪ Random, Sequential selections

Generation

© 2025 Kumaran Systems 6

▪ Deterministic masking

▪ In-Place / In-Flight masking

Masking

Deployment Options

Standalone or

Centralized

Web Server

Integration

Requirements

▪ Centrally managed web application

▪ Or, executable as a single JAR file; with configuration

file names as parameters

▪ Supports parallel processing within each execution

▪ Embeddable in the application

▪ Embeddable in ETL tools (Informatica, DataBricks)

▪ Integrated within CI/CD pipeline.

▪ Failure can be determined using exit code.

▪ Just Java is enough
▪ Minimum version 1.8.x

▪ Recommended to have 4 GB RAM
▪ More the memory, quicker the process

▪ Should have connectivity and access to different data sources

© 2025 Kumaran Systems 7

Comparison Process

▪ Result files with field level differences highlighted

▪ Supports comparing entire schema in one shot

Result

Writer

Detailed

Results

Excel,

CSV

Config

Files

1. Compare config JSON

2. Data Source config JSON

Mismatch

Reports+

Comparison

Process

Data Source 1:

Database (Tables, Queries),

Excel, CSV, Fixed Length,

JSON, XML, Parquet, MQ, …

Reader Filters Transformers
Data

Source

Data Source 2:

Reader Filters Transformers
Data

Source

© 2025 Kumaran Systems 8

Comparison – Actions

© 2025 Kumaran Systems 9

Fine-grained statuses

DQV has advanced control of “Difference Actions” which is used to achieve finer controls over the ignorable, legitimate or

unacceptable differences.

For the required fields, specify the condition and one of the actions → “accept”, “ignore”, or “unacceptable”

Masking Process

▪ Deterministic masking support) for

PDiT requirements

Data Source –

Source

Data Source –

Target

Database,

Excel, CSV/Delimited,

Fixed Length, Parquet

Config

Files

1. Masking config JSON

2. Data Source config JSON

Reader Writer
Data

Source

Data

Sink

Masking

Process

© 2025 Kumaran Systems 10

Masking Features

© 2025 Kumaran Systems 11

▪ In-Flight: Mask the data ask the data is copied from source to target. Ex: PROD to DIT database

▪ Use any data source (DB to DB, File to DB or DB to File)

▪ In-Place: Read the data from table, mask and write back to the table.

▪ Apply the same masked value across other tables in the db.

▪ Maintain referential integrity across parent-child relationships.

▪ Masked data can be stored in file system (Mask Info store) for re-use in another migration run or

different database / schema.

▪ Original values are protected – i.e., only hash value of original value and the new value are stored.

▪ Redaction

▪ Replacement

▪ Randomize

▪ Nullify / Clear

▪ One-way Hashing / Encryption

In-Flight / In-Place

data masking

Deterministic

masking

Repeatable/deterministic

masking

Various masking

Techniques

Masking Techniques

Redact

▪ Retain part of the source data and replace with redaction character (‘x’)

▪ Supports retaining or replacing source characters with alphabet, number characters.

Example:
Source Data: “john.david@abc.com”, Mask: “=x*(.)=x*(@)==x*(.)=”

Result: “jxxx.dxxxx@abx.com”

▪ Replace the values with new values which are meaningful incl. sequential numbers.

Example: “John David”, Replace: “generate:name().fullName()” → “Samuel Daniel”

Example: “100”, Replace: “applyVariancePct(current_value, 20)” → “85”

▪ One way hashing using SHA-256 algorithm

▪ Reversible encryption with the given secret

 Generally, not recommended for sharing data.

Replace /

Variance

Randomize

Hashing /

Encrypt

▪ Clear the values from the field i.e., set to NULLNullify / Clear

© 2025 Kumaran Systems 12

▪ Generate random values, or from range, or from list/lookup or regex patterns

Example: “random(5)” → “39563”, “getNext(‘country’)” → “France”

Masking – Results

© 2025 Kumaran Systems 13

 Source data

Masked data ➔

 Replace

 Randomize

 Redact

 Redact & Randomize

 Replace

 Redact & Replace

Validation Process

▪ Validator is a specialized

transformer

Data Source –

Source

Result

Writer

Detailed

Results

Excel,

CSV

Config

Files

1. Validator config JSON

2. Data Source config JSON

Reader Filters
Data

Source

Validation

Process

© 2025 Kumaran Systems 14

Validation Checks

Validation at

Field level

▪ Data Type

▪ Format of data – Number, String and Date formats, patterns

▪ Range (Min, Max) of values for Numbers and Dates

▪ Allowed list of values / Lookup reference

▪ Validate relationships between fields –

Example: “End Date >= Start Date”, Or “Request Date < Today”

▪ Displays custom message on failures

▪ Uniqueness

▪ Should treat empty values as missing?

▪ Fixing Missing values

▪ Fixing Invalid values

Business Validation at

Record level

Validation at

entire table level

Fixing Values

▪ Log all errors at field, record and table level in an ExcelReporting Issues

© 2025 Kumaran Systems 15

Validation – Error Report

© 2025 Kumaran Systems 16

Field level

validation

Record level

validation

Dataset level

validation

Field level

validation

PK Field

Name(s)

Failed field

name
Actual Value

Custom error

message

Transfer / Migration Process

▪ Supports migrating entire schema in one shot

Data Source –

Source

Data Source –

Target

Result

Writer

Detailed

Results

Database,

Excel, CSV/Delimited,

Fixed Length, Parquet

Config

Files

1. Migrate config JSON

2. Data Source config JSON

Reader Filters Transformers Writer
Data

Source

Data

Sink

Transfer /

Migration

Process

© 2025 Kumaran Systems 17

Generation Process

▪ Meaningful & valid data – name, address, SIN, SSN, etc.

▪ Numerical sequential or random data – within the given range

▪ String data – Sequential or Random data selected from a

pre-defined list

Data Source –

Target

Result

Writer

Summary

Excel,

CSV

Database,

Excel, CSV, Fixed

Length, Parquet

Config

Files

1. Generator config JSON files

2. Data source config JSON

Synthetic Test

Data Generator
Writer

Data

Sink

Generation

Process

© 2025 Kumaran Systems 18

Synthetic Data Generation

▪ Names, Addresses, etc

▪ Random number, strings

▪ Conditional data based on other field values

Meaningful

Fake Data

▪ Regular Expression pattern values

▪ Alpha Numeric pattern

▪ SSN and SIN numbers

▪ Sequentially using values

▪ Randomly using values

▪ Lookup from reference data / tables

▪ Generate child data for each parent record

▪ Lookup data from another reference table

▪ Generate child records as JSON/XML in parent

Pattern

ID numbers

Lookups – List

of values

Parent-Child

relationships

▪ Pattern Masking

▪ Random Masking

▪ Deterministic Masking

Masking Data

© 2025 Kumaran Systems 19

www.kumaran.com

User Interface

▪ Centralized Management
using Web Interface

© 2025 Kumaran Systems 20

www.kumaran.com

Login

© 2025 Kumaran Systems 21

www.kumaran.com

Project Selection

© 2025 Kumaran Systems 22

www.kumaran.com

Quick Actions

© 2025 Kumaran Systems 23

www.kumaran.com

Workflow Editor

© 2025 Kumaran Systems 24

www.kumaran.com

Data Source definition

© 2025 Kumaran Systems 25

www.kumaran.com

Data Specification

© 2025 Kumaran Systems 26

www.kumaran.com

Results

© 2025 Kumaran Systems 27

www.kumaran.com

Run Results

© 2025 Kumaran Systems 28

www.kumaran.com

Comparison Details

© 2025 Kumaran Systems 29

www.kumaran.com

Comparison Results

© 2025 Kumaran Systems 30

www.kumaran.com

Mismatch Results

© 2025 Kumaran Systems 31

www.kumaran.com

Command Line Interface

▪ CLI & Results

© 2025 Kumaran Systems 32

www.kumaran.com

CLI Execution – Configuration Files

▪ Contains various Tasks

▪ Copy, Compare, Validate, Generate

▪ Configure sub-tasks – such as filter, transform, etc.

▪ Each Task is associated with one or more Data Sources

▪ Input, Output and Results

▪ A data source may be a table, schema or file, used for specific task

Task Configuration Location Configuration

▪ Defines various data source locations

▪ Database server details, schema, credentials

▪ File names or folder locations

▪ Supports encrypted password

▪ Supports getting parameters from environment variables

▪ Supports parameterization

▪ Parameters can be overridden from CLI arguments▪ Does not define the
“location” such as
Database Server or
folder names.

▪ Supports
parameterization

▪ Execute sequentially or
parallelly with
dependency

Number of configuration files can be used to extend or reuse existing configuration, or to selectively execute part of the requirements.

© 2025 Kumaran Systems 33

www.kumaran.com

Comparison – Summary Results

Status of
comparison

Source table
information

Target table
information

Comparison Summary

Time taken
in milli-
second

© 2025 Kumaran Systems 34

www.kumaran.com

Field-by-Field Comparison Results

Status of record
(Match, Mismatch,

Source-Only, Target-Only)

All other fieldsSource Field names

Mismatched data
(yellow)

No diff. in
data

(white)

Target Field names Source Field (Green)

Key Fields (Gold)

Target Field (Brown)

Aggregated by DQV

Calculated fields

© 2025 Kumaran Systems 35

www.kumaran.com

Comparison – Mismatch Report

Source Value (Green)

Key Fields (Gold)

Target Value (Brown)

Difference Value
(Number fields only)

Field Name having diff.

© 2025 Kumaran Systems 36

www.kumaran.com

Comparison – Actions

© 2025 Kumaran Systems 37

Fine-grained statuses

DQV has advanced control of “Difference Actions” which is used to achieve finer controls over the ignorable, legitimate or unacceptable
differences.

For the required fields, specify the condition and one of the actions → “accept”, “ignore”, or “unacceptable”

www.kumaran.com

Comparison – Mismatch Summary

Source & Target table details

Total number of records
compared

Mismatched field name
% of failures for this

field

Number of records
having mismatch for

this field

© 2025 Kumaran Systems 38

www.kumaran.com

Transfer / Migration – Results

Status of
migration

Source table
information

Target table
information

Failed Records

Time
taken in

milli-
second

© 2025 Kumaran Systems 39

www.kumaran.com

Incoming Feed Masking - Initial

© 2025 Kumaran Systems 40

Unmasked Data

PROD DB

DQV In-Place Masking

Mask Info
Store

Key: Hash value
Value: Masked value

Masking
Configuration

DEV / SIT / UAT

Activities

✓ Step 1: DBA move the production

data to PDiT environment using

traditional approaches such as

dump file export / import.

✓ Step 2: DQV is executed to do in-

place masking.

✓ Step 3: DBA uses the masked data

for refreshing other lower

environments.

Re-apply masking

DQV creates a Mask Info file which can be used for incremental / sub-

sequent masking purpose for the same environment.

Masked Data

PDiT DB

DBA moves data
using DB dumps

Schemas:

CRISPDB

STAGE_EXT

STAGE

www.kumaran.com

Incoming Feed Masking - Incremental

© 2025 Kumaran Systems 41

Incoming Feeds –
Unmasked Data

DB

Source System feed
in File

Source System feed
via DB

Informatica Workflow

Source
Definition

Step 1

Target
Definition

Step 3

DQV In-Flight Masking

Mask Info
Store

Key: Hash value
Value: Masked value

Masking
Configuration

Java
Transformation STAGE EXT

Masked Data

Step 2

Activities

✓ Step 1: Informatica workflow reads

the source system file or database

✓ Step 2: Informatica Transformation

used DQV library which applies

masked values in-flight.

✓ Step 3: Informatica writes the data

to the target tables.

www.kumaran.com

Informatica Workflow Change

© 2025 Kumaran Systems 42

DQV
Implementation

www.kumaran.com

Statistics

Source Target

25mins

10mn records

© 2025 Kumaran Systems 43

7mins

10mn records

Informatica workflow
with DQV masking

Informatica workflow
without DQV masking

Source Target
43mins

40mn records

Address 7 (5) columns 5mn

Customer 47 (1) columns 5mn

Facility 23 columns 10mn

Instrument 3 columns 20mn

Total 40mn

Synthetic Data Generation
using DQV

Leading enterprise Data Migration – Case Study

Problem statement
▪ There are about 23 millions of records across 15 tables that are required to migrated from IBM DB2 Database to MS

SQL Database Server for the Tax Estimator and Business Cash Flow Planning applications.

▪ SSMA was tried but it requires special privileges on the MS SQL server and requires additional software installation.

Moreover, SSMA does not offer data comparison.

Advantages & Benefits

▪ Quickly migrated the data from source to target database

without any errors.

▪ Field level highlight of differences are provided by DQV

within a short period of time.

Approach
▪ DQV is used to migrate data in all DIT / SIT / PROD

environments. Once migrated, the data is compared with

DQV.

▪ Utilize DQV to compare the database structures of DB2

and SQL Server tables, enabling quick identification of any

differences in table structures, or the definitions of views

and procedures.

PROD Table Statistics

23 million
Records Compared

0 %
Mismatch

0
Mismatched

Records

15
Tables

15
Fully matched

Data Migration

Portfolio

▪ Portfolio: Front Line Technology

▪ Owner: Warren Chan / Montaz Chowdhury

▪ Implementation Period: May 2025 (PROD)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

, 24,956

, 16

, 20,627
, 20,627 , 24,956

, 24,956

, 85

, 2,224,292 , 2,668,730 , 2,834,216

, 2,111,448

, 20,627

, 2,486,555

, 8,689,333

, 2,111,087

Tables / Records

Comparison Statistics

© 2025 Kumaran Systems 45

1
2
5
0
4

1
5
5
9
3

7
2
9
0

1
2
1
4
2

1
1
5
7
9

4
9
7
5

1
4
1
3
6

4
4
6
3 5
4
6
0

14

68

71 23

16

143

13

2

Structure Comparison

Leading Enterprise – Case Study

Problem statement
▪ There are about 800 batches being executed in Prime Services Group.

▪ Data/Report Validation: Whenever there is a change to the batch logic, regression

is required to ensure all ETL jobs are working as intended, but this could not be

done due to time crunch / lack of tools.

▪ The ETL batch configurations are stored in database tables but are not consistently

promoted across different environments, making data comparison a tedious

process.

▪ Schema Validation: The data model and procedure changes done by the

development team is not properly promoted to other environments and caused

errors. Advantages & Benefits

▪ Field level highlight of differences are provided by DQV within a short period of

time.

▪ Integration with DevOps pipelines to reduce manual intervention.

▪ Kumaran agreed to automate in low budget using Fixed bid mode.

▪ Assisted by the DQV product team in implementing enhancements to address

unique testing scenarios.

Approach
▪ DQV would be used to compare outputs of different ETL jobs after executing them

in both SIT-A and SIT-B environments. SIT-B is the production mirror

environment.

✓ Data Load jobs – Compare the data in the tables that are loaded from files

✓ Data Extract jobs – Compare the data in the files that are exported from tables

✓ File Delivery jobs – Compare the file’s meta-data properties (size, check-sum,

last modified, etc) to ensure that the files are exactly same

▪ Utilize DQV to periodically compare the database structures of SIT-A and SIT-B,

enabling quick identification of any differences in table structures, or the definitions

of views and procedures.

DQV will be utilized to ensure that the changes made to the applications do not

disrupt the existing production functionality..

Future Scope

▪ Comparison of JSON structures.

▪ Integration with API and MQs and perform validations.

▪ Implementation / Integration with attestation process.

Data Comparison - PSTM

Total Records: 200,178,235 / 79 tables

Mismatched: 187,079 / 39 tables

32 tables fully matched

Time: 1 hour 45 minutes

200 million
Records Compared

0.09 %
Mismatch

187 k
Mismatched Records

01h 45m
Execution Time

79
Tables

32
Fully matched

39
Mismatch

of

 o
bj

ec
ts

Structure Comparison

Schemas: 9

Passed meta-data objects: 83,725

failed meta-data objects: 350

Execution time - less than 2 minutes

© 2025 Kumaran Systems 46

	Default Section
	Slide 1

	Why DQV?
	Slide 2: Pain Points in Data Processing
	Slide 3: Solution Overview

	DQV Features & Uses
	Slide 4: DQV – Built on lessons learnt
	Slide 5: Features & Data Sources
	Slide 6: Operations

	Deployment Options
	Slide 7: Deployment Options

	Core Operation: Comparison
	Slide 8: Comparison Process
	Slide 9: Comparison – Actions

	Core Operation: Masking
	Slide 10: Masking Process
	Slide 11: Masking Features
	Slide 12: Masking Techniques
	Slide 13: Masking – Results

	Core Operation: Validation
	Slide 14: Validation Process
	Slide 15: Validation Checks
	Slide 16: Validation – Error Report

	Core Operation: Transfer / Migration
	Slide 17: Transfer / Migration Process

	Core Operation: Synthetic Data Generation
	Slide 18: Generation Process
	Slide 19: Synthetic Data Generation

	DQV User Interface
	Slide 20: User Interface
	Slide 21: Login
	Slide 22: Project Selection
	Slide 23: Quick Actions
	Slide 24: Workflow Editor
	Slide 25: Data Source definition
	Slide 26: Data Specification
	Slide 27: Results
	Slide 28: Run Results
	Slide 29: Comparison Details
	Slide 30: Comparison Results
	Slide 31: Mismatch Results

	Command Line Interface
	Slide 32: Command Line Interface
	Slide 33: CLI Execution – Configuration Files
	Slide 34: Comparison – Summary Results
	Slide 35: Field-by-Field Comparison Results
	Slide 36: Comparison – Mismatch Report
	Slide 37: Comparison – Actions
	Slide 38: Comparison – Mismatch Summary
	Slide 39: Transfer / Migration – Results

	Appendix - Data Masking #1
	Slide 40: Incoming Feed Masking - Initial
	Slide 41: Incoming Feed Masking - Incremental
	Slide 42: Informatica Workflow Change
	Slide 43: Statistics

	Archived
	Slide 45: Leading enterprise Data Migration – Case Study
	Slide 46: Leading Enterprise – Case Study

