
S Y S T E M S

COBOL/CIC/VSAM

TO J2EE/DB2

A LEGACY TRANSFORMATION

A White Paper

2 CONFIDENTIAL S Y S T E M S

TABLE OF CONTENTS

Abstract

introduction

The Requirement

Kumaran Solution

VSAM to DB2 Data Conversion

 VSAM Structures vs. DB2 Structures

 Database Structure for VSAM

 Database Structure for DB2 UDB

 Migration Scenarios

 Case 1 - COBOL Programs Accessing VSAM (Batch Processong)

 Case 2 - CICS/COBOL Accessing VSAM (Online Applications)

 VSAM to DB2 Data Conversion

 1. Build VSAM File Structure Respository

 2. Prepare Data Model for VSAM Clusters

 3. Preparetions for Data Unload

 4. Data Upload from VSAM Data Sets to Physical Sequential Files (Flat Files)

 5. Flat File Transfer (For Cross Platfrom Data Conversion)

 6. Preparations For Data Upload to DB2

 7. Data Upload From Flat Files to DB2

COBOL/CICS to J2EE Application Migration

 CICS/COBOL vs. J2EE Environment

 Migrating CICS User Interface to JSP in a Struts Framework

 CICS/COBOL Application Migration to J2EE

 Decoupling Presentation Layer From Business Layer

 Conversation State Retention in Client Transactions

 Migrating Data Access Logic

Appendix - A

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

3

3

3

3

3

 3

3

4

 5

 5

 5

5

 6

6

8

8

 8

8

 8

9

9

11

14

14

 14

15

16

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

3 CONFIDENTIAL S Y S T E M S

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

VSAM Data Set 1

VSAM Data Set 2

VSAM User Catalog

Non-VSAM Data Set

VSAM Data Set 3 VSAM SPACE

NON - VSAM SPACE

VSAM SPACE Cannot Have
Non-VSAM Data Sets

Non-VSAM SPACE Cannot
Have Non-VSAM Data Sets

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

4 CONFIDENTIAL S Y S T E M S

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

Objects

Extents

Pages

Table Space

Containers

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

Build VSAM File Structure Respository

Preparations For Data Unload

Data Unload VSAM Data Sets

FTP Job

Preparation For Data Upload to DB2

Upload Unloaded VSAM Data to DB2

Prepare Data Model From VSAM File
Structure Repository

Manual Process Automated

Arriving at a Model Based on
Data Type Mapping, Primary,
and AIX Keys

File Transfer and Character Set
Conversion (Cross Platform
Data Consersion)

Load Data USing
DB2 Load Utiliy

Deduce VSAM File Structure
and Cluster Name From Copy
Book, FCT, Cobol Source Files

Generate Cobol and JCL Using
VSAM File Repository (Cross
Platform Data Conversion)

Submition of Unload Jobs Using
IDCAMS or COBOL Programs
(Cross Platfrom Data Conversion)

Generate DB2 DDLs Using Data
Models and Create Database
Objects

5 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

 VSAM to DB2 Data Conversion

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

6 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

JCL/FCT Copy Books

CICS/COBOL/VSAM

Cobol*Converter

Deduce VSAM Data Set/Cluster
Name and Record Structure

VSAM
Structure Repository

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

7 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

8 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

9 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Other
Systems

Data
Storage

TERMINALS

Operating System
MVS/XA

CICSMVS

CICS Application Programs
(COBOL)

Telecommunication Access
Method (VTAM TCAM BTAM)

Data Access
Method

(VSAM BDAM)

Data-Handing
Functions

Data-Comm.
Functions

System Services

Monitoring Functions

Application Program
Services

CIC/COBOL Environment

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

10 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

J2EE Environment

Abstract
Action

Model
ObjectJSP’s

RDBMS
(DB2)

Struts Configuration

Custom
Action

Request
Processor

Action
Servlet

Model
Manager

Struts Tag
Library

Browser

JDBC/SOL

Update
Model

Application Specific Component

Jakarta Struts

Generated Object

Bean
Properties

Business
Event

HTTP
Response

HTTP
Request

Database TierBusiness TierWeb TierClient

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

11 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

ASKIP – The field cannot be keyed into, because the
cursor will skip over it if the user fills the preceding
field.

The field can be mapped as normal texts or <INPUT
type=text…> based on the type (Label/Text field)
Auto skip can be handled in java script for TEXT
type

PROT – The field cannot be keyed into, but the
cursor will not skip over it if the user fills the
preceding field.

PROT can be mapped as a label or Text Field with
READONLY option enabled in JSP

UNPROT – The field can be keyed into. HTML Text absolute positioned with <INPUT> tag.
Cursor will stop in this field for user input.

FSET – Turns on the modified data tag. Field is sent
from terminal to memory only if the field changes.

FSET is handled using JavaScript variables.

NUM – The field can be keyed only numbers, decimal
points, and minus signs.

HTML Text Control with JavaScript to accept
numbers only.

NORM – Normal Display Intensity Normal HTML Text

BRT – Bright (Highlighted) Intensity BOLD HTML Text

FRSET - Field is sent irrespective of changes. FRSET is handled using JavaScript variables.

DRK – Dark (not displayed) <INPUT type=”password” name=”…” …>, only for
ATTRB=(DRK, UNPROT)

ATTRB1 HTML

ATTRB2 HTML

ATTRB3 HTML

ATTRB4 HTML

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

12 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

KUMARAN SYSTEMS INC

This figure shows the CICS/COBOL User Interface and the migrated user interface using
JSP/STRUTS in J2EE:

18 CONFIDENTIAL

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

13 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

14 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Prog-id: Sales1
Data Control.
FD Section.
...
WS Section
 Internal-variables.
 COP YWS-1.
 ...
Linkage Section.
...
Screen Section.
...
Report Section.

Procedure Division.
Main Section.
 001-start
 ...
 002-routine-1.
 ...
 ...
 ...
00n-end.
 ...

Linkage Section
 -Copy files:
 sales-linkage-1

Program
 -Copy files:
 prog1

Working Storage
 -Copy files:
 sales-ws-1.

FD Structures
 product-FD
 order-FD

COBOL/CICS/VSAM to J2EE/DB2

Abstract
Currently, most applications are being developed for or
migrated to the web. With this scenario in mind, Kumaran
Systems Inc. ventures into the research and development
arena to migrate the COBOL application to the J2EE
Framework. This paper describes the preliminary work
done to achieve this objective.

Introduction
Java 2 Enterprise Edition (J2EE) has become the industry
standard for web applications. Applications migrated to
J2EE Framework are able to be deployed on any
environment without making the typical tedious and time
consuming changes. This allows users to utilize the
application whenever and wherever it is needed. Not only
does this offer a new level of convenience, but it also
allows for simple and cost-effective administration. NxTran
provides a cost- and time-effective solution for migrating
legacy systems to the J2EE Framework.

The Requirement
The evolution of web technologies in recent years
presents a compelling reason for companies to consider
moving their legacy COBOL Customer Information
Control System (CICS) application to the web.
What are some compelling reasons that companies
should consider moving their legacy applications?
Maintenance Cost: There is a substantial hardware and
software cost involved when running a mainframe.
Application Maintenance: Mainframe applications are
built using legacy development environments such as
CICS, and VSAM files. Hiring programmers with the
knowledge to maintain these applications is a costly
investment.

Kumaran Solution
Typical mainframe applications are comprised of
COBOL/CICS programs, JCL, and VSAM cluster files. CICS
defines the user interface. The business logic is
embedded inside the COBOL application and business
data is stored in the VSAM cluster files.
Migrating the mainframe application to J2EE involves two
phases:
• VSAM to DB2 or any other RDBMS data conversion
• COBOL/CICS to J2EE application conversion

Kumaran’s NxTran migrates CICS-based applications to
J2EE-complaint frameworks such as EJB and Struts. The
tool aims at minimizing any post-conversion tasks that may
need to be carried out by the user after the process of
migration, by incorporating a plethora of features into the
product in terms of the new environment.

VSAM to DB2 Data Conversion
This section compares VSAM with DB2 and analyzes the
need to migrate to DB2. The following illustrates the data
conversion methodology that Kumaran utilizes to convert
data from VSAM data sets to DB2 and how Kumaran's
NxTran tool automates various stages in the process.
Though the target database that is used in this white paper
is IBM’s DB2, this process can be applied to any other
industry-standard RDBMS.

VSAM Structures Versus DB2 Structures
Data Structure for VSAM
VSAM and Non-VSAM data sets can be cataloged in the
VSAM Master catalog. User data sets are cataloged in
VSAM user catalogs. The user catalog is cataloged in a
master catalog.

VSAM space can have two types of objects in it:

 • VSAM Catalog
 • VSAM data sets, including base clusters and alternate
 indexes

VSAM space on a disk can be defined by using Access
Method Services. VSAM space can have one or more
VSAM data sets in it.

Data Structure for DB2 UDB
These components comprise the database structure for
DB2 UDB:

Containers
A container is a physical storage device. A directory name,
device name, or file name can identify it. A container is
assigned to a tablespace.

Tablespace
An IBM DB2 UDB database comprises one or more logical
storage units called tablespaces.

Objects
The level of logical database storage above an extent is
called a segment. A segment is a set of extents that have
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Extents
An extent is a specific number of contiguous data blocks
that are allocated for storing a specific type of information.

Pages
IBM DB2 UDB stores data in data Blocks or pages. One
data block or page is assigned a specific number of bytes
of physical database space on disk.

Why VSAM to DB2?

VSAM is a file access method, whereas DB2 is a RDBMS,
with all the inherent benefits of a DBMS. The main
advantage of using an RDBMS is to impose a logical and
structured organization on the data. An RDBMS delivers
economy of scale for processing large amounts of data
because it is optimized for such operations.

Additionally, using an RDBMS provides a central store of
data that can be accessed by multiple users, from multiple
locations. Data can be shared among multiple
applications, instead of new iterations of the same data
being propagated and stored in new files for every new
application. Most flat-file approaches are designed to be
accessed by a single user or a single process at a time.

Central storage and management of data within an
RDBMS provides these benefits:

 • Data abstraction and independence
 • Data security
 • Locking mechanism for concurrent access with these
 properties: atomicity, consistency, isolation, and
 durability (ACID)
 • An efficient handler to balance the needs of multiple
 applications using the same data
 • The ability to swiftly recover from crashes and errors
 • Robust data integrity capabilities and simple access
 using a standard API
 • Uniform administration procedures for data

A RDBMS offers the ability to provide many views of a
single database schema. A view defines logical data
independence, protection from changes to the logical
structure of data migration scenarios, what data the user
sees and in what manner the data is displayed. The
RDBMS provides a level of abstraction between the
conceptual schema, which defines the logical structure of
the database, and the physical schema that describes the
files, indexes, and other physical mechanisms used by the
database. Users function at the conceptual level. For
example, the user may query columns within rows of
tables, instead of having to figure out how to access data
by employing the different types of physical structures
used by RDBMS to store data.

When a RDBMS is used, systems can be modified
efficiently and effortlessly whenever business
requirements change. New categories of data can be

15 CONFIDENTIAL S Y S T E M S

added to the database without disruption to the existing
system. With DB2, for example, adding a new field is as
simple as issuing an ALTER statement to add the new
column to the table. Performing a similar task in VSAM is
much more difficult, especially if the file does not have any
unused filler area at the end.

An RDBMS provides a layer of independence between the
data and the applications that use the data. In other words,
applications are insulated from how data is structured and
stored. The RDBMS provides two types of data
independence:

 • Logical data independence – Protection from changes
 to the logical structure of data
 • Physical data independence – Protection from changes
 to the physical structure of data

Migration Scenarios

CASE 1 – COBOL programs accessing VSAM
(Batch Processing)

In this case, VSAM file structures are either defined in
COBOL programs in FILE SECTION of DATA DIVISION or
in COPYBOOK that will be copied into the FILE SECTION
alternatively during compile time.

CASE 2 – CICS/COBOL accessing VSAM
(Online Applications)

In this case, VSAM file structures are not defined in the
CICS/COBOL program. The structure needs to be
deduced by referring to associated resources like FCT
(File Control Table)

1. Build VSAM file structure repository
For every VSAM data set Kumaran's NxTran needs to find
the associated record structure. A repository of such
details is maintained by the tool in Extensible Markup
Language (XML) and will be used as an input for
subsequent steps in the conversion process.

The approach to find record structures and VSAM clusters
vary from CASE 1 to CASE 2.

CASE 1 Approach – File structures are parsed from either
the COBOL source file or the COPYBOOK file or both.
COBOL programs use logical file names for file IO
operations and the logical name is assigned to the device
name. The VSAM cluster or data set name is not referred to
in the COBOL source directly. The association between
the device and the VSAM cluster or data set is defined in
JCL. To determine the cluster name for the file structure
the tool will also need the JCL program to resolve the
indirection made in the COBOL source and update the
structure repository.

CASE 2 Approach – Data independence is the concept
of a program being independent of the structure of the
database or the data access methods. The CICS file
control provides data independence to application
programs so that the application programmer need not
worry about such data-dependent COBOL parameters or
JCL as any of these:

 • INPUT-OUTPUT SECTION
 • SELECT statement
 • FD statement
 • OPEN/CLOSE
 • JCL

The following external structures will hold various
metadata information pertaining to the VSAM data set that
is used by the CICS program.

 • File Control Table (FCT) holds the mapping
 information from VSAM cluster or data set to data
 source name.

 • Symbolic Map File holds the WORKING-STORAGE
 variables that are used as input or output buffer for the
 screens variables or CICS.

The tool uses various external data structures like the FCT
to deduce the cluster name and its associated structure

using COBOL source files as inputs to drive the tool
operations and update the VSAM file structure repository.

2. Prepare Data Model for VSAM Clusters
The VSAM File Structure repository built by Kumaran's
NxTran is used to arrive at a data model that defines the
relationships among entities and data constraints. The
tool manages the deduction of VSAM data set record type
definitions to the maximum extent. Sometimes, due to
ambiguities arising out of redefinitions, manual
intervention may be necessary. NxTran uses the data type
mappings in Appendix A, to arrive at the column data
types for the VSAM record types.

Typically, the data model is normalized to the Third
Normal Form (3NF) where every VSAM file set becomes a
db2 table with the base VSAM base cluster key becoming
the primary key and the copybook fields into db2
columns.

Type Mappings
NxTran uses the record descriptions in the FD section of
COBOL programs to deduce the record data definition.
Kumaran's NxTran requires that the FD descriptions be
provided in detail for every record. This is one of the
primary requirements for a successful conversion.
Kumaran's NxTran is capable of identifying the full FD
description from several programs within the given
application, provided that all the programs contain the
total FD description. For example, consider these
descriptions within two COBOL programs:

 Program-1: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 ename PIC X(10).
 05 filler PIC X(20).
 …
 Program-2: ...
 FD emp-file.
 01 emp-rec.
 05 eno pic 9(5).
 05 filler PIC X(10).
 05 dno PIC 9(4).

NxTran can deduce the correct data definition that is
written in SQL DDL for DB2.

CREATE TABLE emp(eno INTEGER, ename CHAR(10),
dno INTEGER).

Some systems utilize directories to sort data. For example,
when the personnel data is associated with different
areas, (i.e., India, China, and Canada), it could be
organized into the three data files:

/personnel/India.dat
/personnel/China.dat
/personnel/Canada.dat

For such systems, a facility has been provided to define an
additional field. For example, AREA CODE CHAR(30) in
the target record schema and merging the data into one
table. Subsequently, the primary index of the new records
will be altered to contain the additional field, and all future
search statements on the record will be programmed
regarding the new field.

Multi-Schema Definition
COBOL files with multiple record (01) entries will be
broken down to a relevant number of record schemas. For
example, consider this file:
 FD order-record.
 01 order-header.
 05 rec-type pic x.
 05 order-num pic 9(5).
 05 customer-id pic 9(6).

 01 order-line.

 05 rec-type pic x.
 05 order-num pic 9(5).
 05 line-num pic 9(3).

The file will be broken down into two record schemas in
the target database, namely order-header and order-line
schemas. The indexes associated with the file will be
lined up with the new record schemas.

Array (Table) Handling
COBOL allows the definition of fields as single or
multi-dimensional arrays. All single and
multi-dimensional fields will be split into two files. For
example, consider this file:
 Program-1: ...
 FD personnel-file.
 01 personnel.
 05 id pic 9(5).
 05 forename PIC X(10).
 05 surname PIC X(20).
 05 address PIC X(20) Occurs 3 times.
It will be converted to the following 2 record types:

 Record: personnel,
 Fields:
 id Integer,
 forename char (10),
 surname char (20).

 Record: personnel_mx
 Fields:
 id Integer,
 indx integer,
 address char (20).

On the program side, the first element of address field is
still accessed as personel.address[1] - the database
wrapper classes will access the variable as
SELECT personnel_mx WHERE id = personnel.id AND
indx = 1;

Redefinitions
Redefinitions are often utilized to meet one of these two
objectives:

 • Reduction in memory utilization of the application
 • Use of different data organization to simplify or
 enhance the programming code

Redefinitions of data sections are not supported in Java
or within any ANSI SQL database. The redefinitions are
handled by NxTran by reducing the fields to the lowest
common denominators and replacing all subsequent
entries to the lowest common denominator. For example
in programs with such data:

 01 personnel.
 05 id pic 9(5).
 05 name PIC X(30).
 05 detailed_names REDEFINES name.
 07 forename PIC X(10).
 07 surname PIC X(20).

In this case, all references to the name will be replaced by
forename and surname. This technique applies to all data
sections including the FILE and WORKING-STORAGE
sections.
If a data entry redefines parts of its structures in different,
non-compatible forms, that is, where no assumption can
be made to the nature of the lowest common
denominator, then there can be two options:

 • The tool can be programmed to ignore the particular
 redefinition in instances when the purpose is
 reduction memory utilization.
 • In other cases, manual intervention is required to
 clarify the final layout of the record structure.

3. Preparations for Data Unload
For cross-platform data conversion, the tool generates
COBOL and JCL source files by using the VSAM file
repository that was built in the previous process. The
generated COBOL source will READ the VSAM file
sequentially and WRITE the Physical Sequential file.

4. Data Unload from VSAM data sets to Physical
Sequential files (Flat Files)
For cross-platform data conversion, submitting the JCLs
generated in Step 3 unloads data.
For the same platform conversion, the tool unloads data
using IDCAMS (REPRO) with inputs from the VSAM
structure repository.

5. Flat file transfer
(for cross-platform data conversion)
This step is done for character changes from EBCDIC and
to get the file transferred to the target HOST where the

uploading of data to DB2 will happen.

6. Preparations for Data Upload to DB2
DDLs are generated for DB2 application schema
employing the data model by Kumaran's NxTran tool by
using the following data type mappings. The generated
DDLs are executed against the target DB2 db instance to
create the necessary tables and other db structures.

7. Data Upload from Flat File to DB2
To upload data, the DB2 load utility is used to load data
from the physical sequential or flat files to the tables
created in Step 6. A load utility is capable of efficiently
moving a large quantity of data into newly created tables,
or into tables that already contain data.

The utility can handle all data types in Appendix A,
including large objects (LOB) and user-defined types
(UDT). The load utility does not fire triggers and does not
perform referentially or table constraints checking, other
than validating the uniqueness of the indexes. This
provides for exponentially faster load times.
In the mainframe environment, the DB2 load utility loads
data from a sequential dataset into one or more tables of
a tablespace.

COBOL/CICS to J2EE Application Migration
CICS is a general-purpose data communication system
that can support a network of many hundreds of
terminals. It may be seen as a specialized operating
system whose job is to provide a favorable environment
for the execution of online application programs,
including an interface to files and databases. CICS
provides for the following broad services:

 • Telecommunication - The functions required by
 application programs for communication with remote
 and local terminals and subsystems
 • Multitasking - Control of concurrently running
 programs servicing many online users
 • Data access and transaction control - Facilities for
 accessing database and files
 • Intersystem communication - The ability to
 communicate with other CICS systems and database
 systems, both in the same computer and in connected
 computer systems

J2EE is a platform that offers a multi-tiered distributed

application model, the ability to reuse components,
integrated Extensible Markup Language (XML)-based
data interchange, a unified security model, and flexible
transaction control. J2EE component-based solutions
are not tied to the products and application programming
interfaces (API) of any one vendor. Vendors and
customers enjoy the freedom to choose the products
and components that best meet their business and
technological requirements.

CICS/COBOL vs. J2EE Environment:
In CICS, a transaction is a collection of logically related
programs in an application. A transaction could be
completed through several tasks that can be seen as a
single thread of execution. A task can receive data from
and send data to the terminal that started it, read and
write files, start other tasks, and carry out many other
actions. In CICS, a task can contain several Logical Units
of Work (LUWs), quite similar to atomic transactions in
RDBMS. Thus an application is a collection of programs,
which are logically grouped to form several transactions.
A task is created when each transaction gets executed.
Within each task, we could have multiple LUWs. Tasks
are managed by the CICS task control program; the
management of multiple tasks is called multitasking.

Like any online applications interacting with users at the
terminal, in CICS transactions are conversational. To the
user, a series of non-conversational transactions gives
the appearance of a single conversational transaction.
This means that every time a transaction is run, or
logically resumed, a new task is created. CICS calls it
pseudo-conversational transactions.

The J2EE platform uses a multi-tiered distributed
application model. Application logic is divided into
components according to function, and the various
application components that make up a J2EE application
are installed on different machines depending on the tier
in the multi-tiered J2EE environment to which the
application component belongs:

 • Client-tier components run on the client machine or
 browsers.
 • Web-tier components run on the J2EE server.
 • Business-tier components run on the J2EE server.
 • Enterprise information system (EIS), (for example,
 RDBMS)-tier software runs on the EIS server.

J2EE applications are made up of components. A J2EE
component is a self-contained functional software unit
that is assembled into a J2EE application with its related
classes and files. It communicates with other
components. The J2EE specification defines the
following J2EE components:

 • Application clients and applets are components that
 run on the client.

 • Web components such as Java Servlet and
 JavaServer Pages™ (JSP™) technology components
 that run on the server enterprise JavaBeans™ (EJB™)
 components (enterprise beans) are business
 components that run on the server.

J2EE components are written in Java and are compiled
in the same way as any program in the language.

Containers are the interface between a component and
the low-level platform-specific functionality that supports
the component. Before the web, enterprise bean or
application client components can be executed. It must
be assembled into a J2EE application and deployed into
its container. Here are some of the services provided by
the container:

 • The J2EE security model lets you configure a web
 component or enterprise bean so that only authorized
 users access system resources.
 • The J2EE transaction model lets you specify
 relationships among methods that make up a single
 transaction so that all methods in one transaction are
 treated as a single unit.
 • JNDI lookup services provide a unified interface to
 multiple naming and directory services in the

 enterprise, so that application components can
 access naming and directory services.
 • The J2EE remote connectivity model manages
 low-level communications between clients and
 enterprise beans. After an enterprise bean is created, a
 client invokes methods on it as if it were in the same
 virtual machine.

Comparing the above two environments, the CICS
application can be mapped to one or more logically
related J2EE components that are deployed in the J2EE
container, which is identified uniquely with Universal
Resource Identifiers (URIs). The container handles the
client request by locating an instance of the J2EE
component, such as Java Servlet, from its servlet pool or
creates one if one doesn’t exist already. It then assigns a
thread from its thread pool to service the client. This is
achieved by invoking the instance’s service method. The
execution of the service method is analogous to a task in
the CICS environment. The service method may also
support multiple LUWs, which are known in the J2EE

context as J2EE transactions by way of invoking session
beans.

In an enterprise bean with container-managed
transactions, the EJB container sets the boundaries of
the transactions. Typically, the container begins a
transaction immediately before an enterprise bean
method starts. It commits the transaction just before the
method exits. Each method can be associated with a
single transaction.

Session Bean
A session bean is a type of enterprise bean that serves as
an extension of the client application. It performs tasks on
behalf of a client and maintains a state related to that
client. This state is called a conversational state because
it represents a continuing conversation between the
stateful session bean and the client. Methods invoked on
a stateful session bean can write and read data to and
from this conversational state. This state is shared among
all methods in the bean. Stateful session beans tend to be
specific to one scenario. They represent logic that might
have been captured in the client application of a two-tier
system.

Migrating CICS User Interface to JSP in a Struts
Framework:
In CICS, screens are defined with Basic Mapping
Support (BMS) macros that are a form of assembler
language. When the map is defined JCL is used to
assemble it into a symbolic map and a physical map. The
physical map contains the executable to carry out do
these actions:
 • Build the screen, with all titles and labels in their
 proper places with all the attributes for the various
 fields.
 • Merge the data from the program in the proper places
 on the screen when the screen is sent to the terminal.
 • Extract the data for the processing program when the
 screen is received.

The symbolic map contains a COBOL structure that
defines all the fields that are copied into the processing

programs during compilation, so that field variables can
be manipulated during runtime.

The field definition macros, DFHMDF are used by the
Kumaran JSP generator tool to generate the equivalent
JSP pages by using Kumaran custom tags and struts
tag-libs. The resulting JSP page will generate an HTML
page and a Cascading Style Sheet (CSS), which is
generated to handle the positioning of HTML form
elements similar to the CICS screen layout with these
mapping rules:

A DFHMDF Macro is typical as follows:
Fieldname DFHMDF POS=(line, column),
LENGTH=number,
INITIAL=’text’, OCCURS=number,
ATTRB=(attr1, attr2…)

This figure shows the CICS/COBOL User Interface and the migrated user interface using JSP/STRUTS in J2EE:

These additional features are incorporated in the
converted application at the user interface level.

 • Two state fields to Check box item
 • Key invocation to Pushbuttons
 • Implementations of Toolbars for shortcuts to Program
 Function keys (PF keys)
 • Implementations of Visual Attribute
 • User/error messages to Alert
 • Multi-state items to List/Radio group items

The CICS field names become struts from bean
properties with the accessors get<fieldname> and
set<fieldname>. Struts DynaActionForm is used to
harvest the form variables from the client request.

A Java bean instance is used to maintain the attribute
states of every field in an HTML form. Dynamic changes
to the attribute during runtime are set to the bean
properties and the bean is used during page generation
by the custom tag libraries.

NxTran can read a range of CICS statements in the
application program and convert them to equivalent
Java code. Similarly, the tool can read BMS macro screen
definitions and translate them to JSP and Form/Java
Beans.

This is an illustration of how BMS macros with the map
set’s is converted to its equivalent JSP/Java code:

 DFHMSD TYPE=MAP,
 LANG=Cobol,
 MAPATTS=(COLOR,HILIGHT),
 EXTATT=YES,
 MODE=INOUT,
 CTRL=FREEKB,
 STORAGE=AUTO,
 TIOAPFX=YES
 DFHMDI SIZE=(3,80),LINE=1
 DFHMDF POS=(8,20),
 LENGTH=8,
 ATTRB=PROT,
 INITIAL='VALUE B:'
Eno DFHMDF POS=(8,29),
 LENGTH=3,
 HILIGHT=REVERSE,
 ATTRB=(UNPROT,NUM)
 DFHMDI SIZE=(3,80),LINE=4
 DFHMSD TYPE=FINAL
 END

Equivalent JSP code
 <%@ page language=”java” %>
<%@ taglib uri=”/web-inf/struts-bean.tld” prefix=”bean” %>
<%@ taglib uri=”/web-inf/struts-html.tld” prefix=”html” %>
<html:html>

<body>
 <html:form action=”/sample”>
 <div name=”div1” class=”page1”>
 Value B:

 <html:text property=”eno” styleClass=”inputstyle”
 size=3/>

 </div>
 </html:form>
</body>
</html:html>

Equivalent Form Bean Class
import org.apache.struts.action.Action;
public class sampleForm extends ActionForm{
 private String eno=””;
 public String getEno(){
 return eno;
 }
 public void setEno(String eno){
 this.eno=eno;
 }
}

Request-Response Processing
These CICS commands are used to send and receive the
screen to the terminal:

EXEC CICS SEND
 MAP(mapname)
 MAPSET(setname)
 Options…
END-EXEC.

EXEC CICS RECEIVE MAP(mapname) MAPSET(setname)
END-EXEC.

The RECEIVE MAP functionality is typically implemented in
a client browser as HTTP GET or POST method. The J2EE
Container receives the client request along with the form
variables and the request itself is handled by the STRUTS
framework components like form field harvesting. This is
accomplished before passing the bean to the application

code implemented as part of the framework functionality.

Similarly, EXEC SEND functionality is implemented as
ACTION FORWARDS to send a selected view/JSP to the
client browser with JSP handling the dynamic generation
of the HTML form with fields populated with values from
the business tier, the form bean, or both.

The Kumaran tool automates most of the CICS/COBOL UI
(BMS) generation into a STRUTS framework application
with JSP as the views remove the code plumbing
required to migrate the UI manually.

CICS/COBOL Application Migration To J2EE
A COBOL program typically utilizes the main module and
several copy files. The copy files provide means of
sharing file descriptions, working storage, or internal
variable structures and other definitions. The copy files
can also be used in conjunction with the main program
module, similar to a library file.

The program module often has references to screens
and reports and needs to define the data files that it
needs to access.

This diagram illustrates the overall structure of a typical
COBOL module:

Decoupling the Presentation layer from the
business layer.
In CICS programs there is a clear differentiation of the
presentation layer from the business layer. Basic
Mapping Support (BMS) makes application programs
device-independent. These are the primary functions:

 • To remove constant presentation layer information
 from an application program by placing the default
 constants in BMS screens
 • To provide an access to data fields using symbolic
 field names

This allows the repositioning of fields in the presentation
layer without modifying the application programs or
business layer.

In J2EE, STRUTS uses the design pattern Model View
Controller (MVC) – Model 2, to separate the view logic
from the business logic.

Kumaran Tool migrates all presentation layer logic to JSP
Views and the CICS application program logic to Struts
Action classes invoking business delegates or service
adapters to process the user information that has been
requested or submitted in the business tier. Session
facades have been implemented by using Session
beans.

Conversation State Retention in Client
Transactions
In a CICS/COBOL application, whenever a task ends, all
working storage variables associated with it get
destroyed. However, the DFHCOMMAREA is retained
until the end of a transaction.

LINKAGE SECTION.
01 DFHCOMMAREA
 02 …

Pseudo-conversational transactions state information is
passed from one task to another with the help of the
DFHCOMMAREA. In J2EE, the state of the conversation is
maintained with the help of session objects. Similar to the
DFHCOMMAREA, HttpSession objects live on the J2EE
Container; they’re just automatically associated with the
client by a behind-the-scenes mechanism like cookies or
URL-rewriting. These session objects have a built-in data
structure that lets you store any number of keys and
associated values.

Migrating Data Access Logic
Access to data varies depending on the source of the
data. Access to persistent storage, such as a database,
varies greatly depending on the type of storage such as
relational databases, object-oriented databases, flat files,
and vendor implementation. The migrated CICS/COBOL
applications use the JDBC API to access data residing in
a DB2 RDBMS. The JDBC API enables standard access
and manipulation of data in persistent storage, such as a
relational database. The JDBC API enables J2EE
applications to use SQL statements, which are the
standard means for accessing RDBMS tables.

Application logic using JDBC APIs to access the data
source, in this case, db2, can potentially create a direct
dependency between application code and data access
code. Data access logic including the connectivity and
data access code within the application logic introduces
tight coupling between the application logic and the data
source implementation and makes it difficult and tedious
to migrate the application from one type of data source to
another. When the data source changes, the
components need to be changed to handle the new type
of data source.

Kumaran’s solution is to use a Data Access Object (DAO)
to abstract and encapsulate all access to the data source.
The DAO manages the connection with the data source
to obtain and store data. The DAO implements the access
mechanism that is required to work with the data source.
The data source could be a persistent store like a DB2
RDBMS, or in this case, an external service like a B2B
exchange, a repository like an LDAP database, or a
business service accessed via CORBA Internet Inter-ORB
Protocol (IIOP) or low-level sockets.

The migrated application logic, which relies on the DA,
uses the simpler interface exposed by the DAO for its
clients. The DAO completely hides the data source
implementation details from its clients. Because the
interface exposed by the DAO to clients does not change
when the underlying data source implementation
changes, this pattern allows the DAO to adapt to different
storage schemes without affecting its clients or
application logic. Essentially, the DAO acts as an adapter
between the application logic and the data source.

NxTran automatically introspects the database and
generates the necessary DAOs to access the database
tables and transforms the EXEC CICS
READ/WRITE/REWRITE/UPDATE statements into
application code creating and accessing appropriate
DAOs in the migrated application.

Read Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
 RLDFLD(data-area)
 LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="select cols from <dataset name> where
<colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
ResultSet rs = pstmt.executeQuery();
while(rs.next()){
}

Update Statement
EXEC CICS READ
 DATASET(<data set name>)
 INTO (data area)
RLDFLD(data-area)
LENGTH(data value)
UPDATE
END-EXEC
EXEC CICS REWRITE
DATASET(<data set name>)
FROM(data area)
LENGTH(data value)
END-EXEC

Corresponding Java Code
String qry="update <datasetname> set col1=<val1>
,col2=<val2> where <colname>=<value>";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

Write Statement
EXEC CICS WRITE
 DATASET(<data set name>)
 FROM(data area)
 LENGTH(data value)
RLDFLD(data-area)
END-EXEC

Corresponding Java Code
String qry="insert into <data set name>(columns)
value(<values>)";
PreparedStatement pstmt =
conn.prepareStatement(qry);
int count= pstmt.executeUpdate();

16 CONFIDENTIAL S Y S T E M S

SMALLINT

INTEGER

BIGINT

DECIMAL (p, s)

REAL

DOUBLE

CHAR (n)

VARCHAR (n)

LONG VARCHAR

DATE

TIME

TIMESTAMP

GRAPHIC (n)

VARGRAPHIC (n)

LONG GRAPHIC (n)

16-bit signed integer01 name PIC S9(4) COMP-5.

32-bit signed integer01 name PIC S9(9) COMP-5.

64-bit signed integer01 name PIC S9(18) COMP-5.

Packed decimal 01 name PIC S9(m)V9(n) COMP-3.

Single-precision floating point 01 name USAGE IS COMP-1.

Double-precision floating point 01 name USAGE IS COMP-2.

Fixed-length character string 01 name PIC X(n).

01 identifier PIC X(10).

01 identifier PIC X(8).

01 identifier PIC X(26).

01 name PIC G(n) DISPLAY-1.

Variable-length character string

Fixed-length double-byte character string

26-byte character string

8-byte character string

10-byte character string

Long variable-length character string

Variable length double-byte character string with
2-byte string length indicator

Variable length double-byte character string with
2-byte string length indicator

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC X(n).

1<=n<=32 672

01 name.
49 length PIC S9(4) COMP-5.
49 data PIC X(n).

32 673<=n<=32 700

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

1<=n<=16 336

01 name.
49 length PIC S9(4) COMP-5.
49 name PIC G(n) DISPLAY-1.

16 337<=n<=16 350

COBOL Data TypeSQL Column Type SQL Column Type Description

APPENDIX - A

